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Testing a point null hypothesis

µ̂

α = 0.05

Ȳ

• We have data from a
distribution

• We know everything about the
distribution except a location
parameter.

• We want to test that the
location parameter of the
distribution is a particular
value µ̂

• Standard frequentist approach
is a p-value based significance
test.

• We are going to discuss the
Bayesian approach.
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Two Hypotheses

µ̂ Ȳ

H0 : p(Yi | µ̂) µ̂ known

µ̂ µ1µ2 µ3

H1 : p(Yi |µ) µ unknown

• Same distribution and probability density function, p, for H0 and
H1

• Analysis is symmetric with respect to the hypotheses.

• H0 is the null hypothesis

• H1 is the alternative hypothesis
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Bayesian hypothesis testing

P (H0 |Y )

P (H1 |Y )︸ ︷︷ ︸
Posterior odds ratio

=
p(Y |H0)P (H0)

p(Y |H1)P (H1)
=

p(Y |H0)

p(Y |H1)︸ ︷︷ ︸
Bayes factor

· P (H0)

P (H1)︸ ︷︷ ︸
Prior odds ratio = 1

• p(Y |Hn) is the evidence for hypothesis n.

• P is total probability, p is probability density.

• We assume independent identically distributed data.

• We need to keep track of normalizing factors.
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Evidence for the null hypothesis, H0

Assume: p(Yi |H0) = N (Yi | µ̂, σ2)
Then:

p(Y |H0)︸ ︷︷ ︸
Likelihood for all data

=
n∏

i=1

N
(
Yi | µ̂, σ2

)
= N

(
Y | µ̂, σ2

)

p(Y |H0) =
1

(2πσ2)
n

2

exp

(−n

2σ2

(
Y 2 − Y

2
))

︸ ︷︷ ︸
Scaling factor C1

· exp
(−n

2σ2
(Y − µ̂)2)

)

Where:

Y Mean of the data

Y 2 Mean of the square of the data

n The number of data

µ̂ The value for the mean in the null hypothesis i. e. null value

σ2 Known variance of distribution
Los Alamos National Laboratory UNCLASSIFIED 11/15/2017 | 5



UNCLASSIFIED

Evidence for the alternative hypothesis, H1

• Using the law of total probability

p(Y |H1) =

∫
dµ p(Y, µ |σ2)

• Apply the definition of conditional probability.

p(Y |H1) =

∫
dµ p(Y |µ, σ2)p(µ)

• As in H0, we assume the data are normally distributed about the
mean µ.

p(Y |H1) =

∫
dµ N

(
Y |µ, σ2

)
p(µ)
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Prior for µ in H1

• The prior must be normalizeable.

• Can’t use a non-informative prior.

• We choose a normal distribution centered about µ̂

p(µ) = N
(
µ | µ̂, τ2

)

What value should we give to τ2?
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Evidence for H1 (continued)

Using this prior, we can write the evidence for the alternative
hypothesis as:

p(Y |H1) = C1
1√
2πτ2

∫
dµ exp

(−n

2σ2
(Y − µ)2 +

−1

2τ2
(µ− µ̂)2

)

• C1 is the same normalizing factor that appeared in H0

• The integral has a closed-form solution:

p(Y |H1) = C1
1√
2πτ2

exp

(
−1

2

(
Y − µ̂

)2
σ2

n + τ2

)
.
√
2πτ̃2

Where:

• 1

τ̃2
=

1

τ2
+

n

σ2
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Evaluating the Bayes ratio

P (H0 |Y )

P (H1 |Y )
=

exp

(−n

2σ2
(Y − µ̂)2)

)

√
τ̃2

τ2
exp

(
−1

2

(
Y − µ̂

)2
σ2

n + τ2

)

Where:

Y , n Given by the data

σ2 Assumed known

µ̂ Given in the problem formulation

τ2 Unknown from problem formulation
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Simplified expression for the Bayes ratio

Introduce:

Variance Ratio ρ2 ≡ τ2

σ2/n

• A re-scaled value for τ2

Standard error term Υ2 ≡ (Y−µ̂)
2

σ2/n

• The number of standard errors by which the mean
of the data differ from the null value

Define:

G
(
Υ2, ρ2

)
≡ P (H0 |Y )

P (H1 |Y )

To obtain:

G
(
Υ2, ρ2

)
=
√
1 + ρ2 exp

(−Υ2

2

ρ2

ρ2 + 1

)
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Implications of G

G
(
Υ2, ρ2

)
=
√
1 + ρ2 exp

(−Υ2

2

ρ2

ρ2 + 1

)

• As ρ2 → 0, Bayes ratio goes to 1

– This is logical as H1 is the same as H0 when τ2 = 0

• As ρ2 → ∞, Bayes ratio goes to ∞
– If the prior is infinitely wide, H0 is infinitely favored

• The Bayes ratio depends critically on the width of the prior for
µ.

– Unlike in parameter estimation.

• This is a known problem in Bayesian hypothesis testing
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Minimum of the Bayes ratio

• If Υ2 < 1, the minimum is at
ρ2 = 0

– No value of τ2 can make H1

preferred.

• The function G has a minimum
at ρ2 = Υ2 − 1 when Υ2 > 1

• ∀Υ2 > 1, there is a nonzero
minimum value for the Bayes
ratio

– The odds ratio in favor of H0

cannot get lower than the
value obtained with this τ2

• This is the state of the art
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Is there a better way to pick the width of the
prior?

This approach to hypothesis testing raises some questions:

• Is the value for τ2 that minimizes the Bayes factor a likely value
for this variable?

• What does the data tell us about τ2?

We construct a hierarchical model to:

• Examine the meaning of different choices of τ2.

• See what value of τ2 is suggested by the data.

• Examine the relationship between Υ2 and τ2
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What is a reasonable value for τ 2

Based on our model for H1, we construct a hierarchical model for
the joint posterior probability of µ and τ2 given the data.

p
(
µ, τ2 |Y, µ̂, σ2

)
∝ N

(
Y |µ, σ2

)
︸ ︷︷ ︸

Likelihood

p(µ, τ2)︸ ︷︷ ︸
Joint prior

∝ N
(
Y |µ, σ2

)
N
(
µ | µ̂, τ2

)
︸ ︷︷ ︸
Same as H1

p(τ2)︸ ︷︷ ︸
New

This is a hierarchical model since the likelihood is not dependent on
τ2
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Joint posterior for µ and τ 2

This expands to:

p(µ, τ2 |Y , µ̂,
σ2

n
) ∝ 1√

2πτ2
exp

(
−1

2
(Υ− ξ)2 +

−1

2

1
nσ

2

τ2
(ξ)2

)
p(τ2)

where:

ξ =

√
n

σ2
(µ− µ̂)
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Evaluating the posterior marginal for τ 2

• Integrate out µ from the joint posterior distribution to get the
posterior marginal distribution for τ2

p
(
τ2 |Y, µ̂, σ2

)
∝
∫

∞

−∞

dµ p(µ, τ2 |Y , µ̂,
σ2

n
)

p
(
τ2 |Y, µ̂, σ2

)
∝
√

1
nσ

2

τ2 + 1
nσ

2
exp

(
−1

2

(Y − µ̂)2

τ2 + 1
nσ

2

)
p(τ2)

• We need to pick a form for p(τ2) that will allow this distribution
to be normalized
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Possible forms for the hyper-prior

• The marginal posterior distribution for τ2 looks like:

p
(
τ2 |Y, µ̂, σ2

)
∝ 1

(τ2 + 1
nσ

2)
1
2

exp

(
− C

τ2 + 1
nσ

2

)
p(τ2) C > 0

p(τ2) = 1 Posterior not integrable at ∞

p(τ2) =

(
1

τ2

)n

, n ≥ 1

2
Posterior not integrable at 0

p(τ2) =

(
1

τ2 + 1
nσ

2

)2

Posterior integrable from 0 to ∞
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Including the hyper-prior

The prior probability of τ2 is now:

p(τ2) =

(
1

τ2 + 1
nσ

2

)2

This gives us a joint posterior distribution for µ and τ2

p(µ, τ2 |Y , µ̂,
σ2

n
) ∝ 1√

τ2
1

(τ2 + 1
nσ

2)2
exp

(−1

2
(Υ− ξ)2 +

−1

2

1

ρ2
(ξ)2

)
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Contours of the joint probability distribution
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Change of variables in the posterior marginal
for τ 2

Including the hyper-prior in the posterior marginal yields:

p
(
τ2 |Y, µ̂, σ2

)
∝ 1
(
τ2 + 1

nσ
2
)5/2 exp

(
−1

2

(Y − µ̂)2

τ2 + 1
nσ

2

)

Introduce a change of variables

ζ2 = (τ2 +
1

n
σ2)

Because τ2 must be a positive value we have:

p
(
ζ2
)
≡ 0 ∀ζ2 ≤ 1

n
σ2
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Marginal distribution

The marginal distribution becomes:

p

(
ζ2 |Υ,

1

n
σ2

)
∝
(
ζ2
)
−( 3

2
+1)

exp

(
−1

2

(Y − µ̂)2

ζ2

)

This is in the form of an un-normalized inverse gamma distribution
with

α =
3

2

β =
1

2
(Y − µ̂)2

=
1

2
Υ2σ

2

n
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Normalizing

• Using the known cumulative probability function for the inverse
gamma distribution

∫ x

0
dζ2

βα

Γ(α)

1

(ζ2)(α+1)
exp

(
β

ζ2

)
=

Γu(α,
β
x )

Γ(α)

• Where Γl / Γu is the lower / upper incomplete gamma function

• We can obtain the normalizing factor for our truncated
distribution

Γ(α)

βα

Γl

(
α, βx

)

Γ(α)
=

∫
∞

x
dζ2

(
ζ2
)
−(α+1)

exp

(−β

ζ2

)
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Normalized posterior marginal for ζ2
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Median and Mode for posterior marginal for
ζ2

Mode

• The mode is 0 for Υ2 < 5

• The mode occurs at ζ2 > 1
nσ

2

for Υ2 > 5

ζ2mode =
β

α+ 1

=
1

5
Υ2 1

n
σ2

Median

ζ2median =
1
2Υ

2 1
nσ

2

Q−1
l

(
α, 12Ql(α,

1
2Υ

2)
)

Ql(α, β) =
Γl(α, β)

Γ(α)
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Expected value of posterior marginal for ζ2

• Since the probability density function for ζ2 is zero from ζ2 = 0
to ζ2 = 1

nσ
2, the standard expression for the mean of the inverse

gamma distribution is incorrect.

• We want to determine the expected value of the posterior
marginal over the domain where its probability is nonzero.

E(ζ2) =

∫
∞

1
n
σ2

dζ2 ζ2p(ζ2)

=
1

2
Υ2 1

n
σ2Γ(

1
2)

Γ(32)

Ql(
1
2 ,

1
2Υ

2)

Ql(
3
2 ,

1
2Υ

2)
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Summary of the posterior marginal
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Applying this to the Bayes ratio

• If Υ2 is large, the choice of ρ2

does not matter.

• If Υ2 is small, the median of
the posterior marginal is the
closest value to that which
value which minimizes the
Bayes factor.
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Applying this to the Bayes ratio

Bayes ratio
Υ2 Minimum Expectation Delta Median Delta

1.00 1.0000 1.3003 0.3003 1.0637 0.0637
1.25 0.9867 1.2032 0.2165 1.0126 0.0259
1.50 0.9538 1.1109 0.1571 0.9612 0.0074
1.75 0.9092 1.0236 0.1144 0.9097 0.0005
2.00 0.8578 0.9413 0.0835 0.8586 0.0008
3.00 0.6372 0.6611 0.0239 0.6618 0.0246
5.00 0.3026 0.3045 0.0019 0.3472 0.0446
7.00 0.1317 0.1319 0.0001 0.1609 0.0292
9.00 0.0549 0.0550 0.0000 0.0692 0.0142
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Conclusions

• The value of the Bayes factor obtained when using the median of
the posterior marginal is almost the minimum value of the Bayes
factor.

• The value of τ2 which minimizes the Bayes factor is a reasonable
choice for this parameter.

• This allows a likelihood ratio to be computed with is the least
favorable to H0.
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Questions?
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Consider the marginal distribution of µ
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Marginals
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